a finite difference technique for solving variable-order fractional integro-differential equations
نویسندگان
چکیده
in this article, we use a finite difference technique to solve variable-order fractional integro-differential equations (vofides, for short). in these equations, the variable-order fractional integration(vofi) and variable-order fractional derivative (vofd) are described in the riemann-liouville's and caputo's sense,respectively. numerical experiments, consisting of two examples, are studied. the obtained numerical results reveal that the proposed finite difference technique is very effective and convenient for solving vofides.
منابع مشابه
A finite difference technique for solving variable-order fractional integro-differential equations
In this article, we use a finite difference technique to solve variable-order fractional integro-differential equations (VOFIDEs, for short). In these equations, the variable-order fractional integration(VOFI) and variable-order fractional derivative (VOFD) are described in the Riemann-Liouville's and Caputo's sense,respectively. Numerical experiments, consisting of two exam...
متن کاملFinite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
متن کاملA spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملNON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this article we have considered a non-standard finite difference method for the solution of second order Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...
متن کاملCompact finite difference methods for high order integro-differential equations
High order integro-differential equations (IDE), especially nonlinear, are usually difficult to solve even for approximate solutions. In this paper, we give a high accurate compact finite difference method to efficiently solve integro-differential equations, including high order and nonlinear problems. By numerical experiments, we show that compact finite difference method of integro-differenti...
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
bulletin of the iranian mathematical societyناشر: iranian mathematical society (ims)
ISSN 1017-060X
دوره 40
شماره 3 2014
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023